14322: 【原4322】完美对
题目
题目描述
author: smallling 原OJ链接:https://acm.sjtu.edu.cn/OnlineJudge-old/problem/4322
Description
有$n$个物品,每个物品有$k$个属性,第$i$件物品的第$j$个属性用一个正整数表示记为$a_{i,j}$,两个不同的物品$i,j$被称为是完美对的当且仅当$a_{i,1}+a_{j,1} = a_{i,2}+a_{j,2}=\dots=a_{i,k}+a_{j,k}$,求完美对的个数。
Input Format
第一行两个数字$n,k$。
接下来$n$行,第$i$行$k$个数字表示$a_{i,1}, a_{i,2},\dots,a_{i,k}$。
$1 \leq n \leq 10^5, 2 \leq k \leq 10, 1 \leq a_i \leq 100$
Output Format
一行一个数字表示答案
Sample Input
5 3
2 11 21
19 10 1
20 11 1
6 15 24
18 27 36
Sample Output
3
ligongzzz's solution
#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
using ull = unsigned long long;
constexpr auto mod = 203ull;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n, k;
cin >> n >> k;
unordered_map<ull, int> rdata, ldata;
int zero_num = 0;
for (int i = 0; i < n; ++i) {
ull rcode = 0ull, lcode = 0ull;
int fnum;
cin >> fnum;
for (int j = 1; j < k; ++j) {
int tmp;
cin >> tmp;
rcode = rcode * mod + ull(100 + tmp - fnum);
lcode = lcode * mod + ull(100 + fnum - tmp);
}
if (rcode == lcode) {
zero_num++;
continue;
}
if (rdata.find(rcode) == rdata.end()) {
rdata[rcode] = 1;
}
else
{
rdata[rcode]++;
}
if (ldata.find(lcode) == ldata.end()) {
ldata[lcode] = 1;
}
else
{
ldata[lcode]++;
}
}
int ans = 0;
for (auto p : rdata) {
if (ldata.find(p.first) != ldata.end()) {
ans += p.second * ldata[p.first];
}
}
ans /= 2;
ans += zero_num * (zero_num - 1) / 2;
cout << ans;
return 0;
}
zqy2018's solution
#include <bits/stdc++.h>
#define REP(temp, init_val, end_val) for (int temp = init_val; temp <= end_val; ++temp)
using namespace std;
typedef long long ll;
int read(){
int f = 1, x = 0;
char c = getchar();
while (c < '0' || c > '9'){if(c == '-') f = -f; c = getchar();}
while (c >= '0' && c <= '9')x = x * 10 + c - '0', c = getchar();
return f * x;
}
int n, k, a[100005][11];
map<vector<int>, int> mp;
void init(){
n = read(), k = read();
REP(i, 1, n)
REP(j, 1, k)
a[i][j] = read();
}
void solve(){
ll ans = 0;
vector<int> tmp(11, 0);
REP(i, 1, n){
REP(j, 1, k - 1)
tmp[j] = a[i][j + 1] - a[i][1];
if (mp.count(tmp))
ans += mp[tmp];
REP(j, 1, k - 1)
tmp[j] = a[i][1] - a[i][j + 1];
if (!mp.count(tmp))
mp[tmp] = 0;
++mp[tmp];
}
printf("%lld\n", ans);
}
int main(){
init();
solve();
return 0;
}